×

Python Tutorial

Python Basics

Python I/O

Python Operators

Python Conditions & Controls

Python Functions

Python Strings

Python Modules

Python Lists

Python OOPs

Python Arrays

Python Dictionary

Python Sets

Python Tuples

Python Exception Handling

Python NumPy

Python Pandas

Python File Handling

Python WebSocket

Python GUI Programming

Python Image Processing

Python Miscellaneous

Python Practice

Python Programs

Dask Array in Python

By Bestha Radha Krishna Last updated : December 21, 2024

Python Dask Array

Dask is parallel computing python library and it is mainly used to run across multiple systems. Dask is used to process the data efficiently on a different cluster of machines. Dask can completely use all the cores available in the machine.

Dask stores the complete data on the disk and uses chunks of data from the disk for processing. Dask analyzes the large data sets with the help of Pandas dataframe and "numpy arrays".

Basically, dask arrays are distributed "numpy arrays". A large "numpy array" is divided into smaller arrays and they are grouped together to form dask array.

Installing Python dask library

Install using this command

pip install dask

Creating a dask array

Dask array.asarray is used to convert the given input into dask array. It converts lists, tuples, numpy array to dask array.

Example: Create a dask array

import dask.array as p

rk = [1, 2, 3, 4, 5]

# converts the list into dask array
d = p.asarray(rk)
print(d.compute())

# print type of d
print(type(d))

r = (1, 2, 3)

# converts the tuple into dask array
k = p.asarray(r)

print(k.compute())

# print type of k
print(type(k))

Output

[1 2 3 4 5]
<class 'dask.array.core.Array'>
[1 2 3]
<class 'dask.array.core.Array'>

Another Example

import dask.array as p
import numpy as np

# create a numpy array
r = np.arange(5)
print(r)  # print type of numpy array
print(type(r))  # converting numpy array to dask array

d = p.asarray(r)
print(d.compute())
print(type(d))

t = np.array([1, 2, 3])
print(t)  # print type of numpy array
print(type(t))  # converting numpy array to dask array

f = p.asarray(t)
print(f.compute())  # print type of dask array
print(type(f))

Output

[0 1 2 3 4]
<class 'numpy.ndarray'>
[0 1 2 3 4]
<class 'dask.array.core.Array'>
[1 2 3]
<class 'numpy.ndarray'>
[1 2 3]
<class 'dask.array.core.Array'>

Comments and Discussions!

Load comments ↻


Advertisement
Advertisement
Advertisement



Copyright © 2024 www.includehelp.com. All rights reserved.