×

Python Tutorial

Python Basics

Python I/O

Python Operators

Python Conditions & Controls

Python Functions

Python Strings

Python Modules

Python Lists

Python OOPs

Python Arrays

Python Dictionary

Python Sets

Python Tuples

Python Exception Handling

Python NumPy

Python Pandas

Python File Handling

Python WebSocket

Python GUI Programming

Python Image Processing

Python Miscellaneous

Python Practice

Python Programs

Home » Python

Python Pandas – Missing Data

Python Pandas: In this tutorial, we are going to learn about the working of the Missing Data in Python Pandas.
Submitted by Sapna Deraje Radhakrishna, on January 09, 2020

While using pandas, if there is a missing data point, pandas will automatically fill in that missing point with NULL or NAN.

Let's first define a dataFrame using Numpy and Pandas.

import numpy as np
import pandas as pd

d = {'A':[1,2,np.nan],'B':[3,np.nan,np.nan],'C':[4,5,6]}
df = pd.DataFrame(d)
print(df)

Output

     A    B  C
0  1.0  3.0  4
1  2.0  NaN  5
2  NaN  NaN  6

Pandas provide following options to work with the missing data,

Drop NAN values

# drops rows with null or NAN values
print(df.dropna())

'''
     A    B  C
0  1.0  3.0  4
'''
# drops columns with null or NAN values
print(df.dropna(axis=1))

'''
   C
0  4
1  5
2  6
'''

Specify a threshold to not drop any number of non-NA values.

# Does not remove the 2nd row because, 
# it has less than 2 NAN values.
print(df.dropna(thresh=2))

'''
     A    B  C
0  1.0  3.0  4
1  2.0  NaN  5
'''

Fill missing values

print(df.fillna('empty'))

'''
       A      B  C
0      1      3  4
1      2  empty  5
2  empty  empty  6
'''

Advertisement
Advertisement


Comments and Discussions!

Load comments ↻


Advertisement
Advertisement
Advertisement

Copyright © 2025 www.includehelp.com. All rights reserved.