Pandas crosstab() function with example

Learn about the Pandas crosstab() function with example. By Pranit Sharma Last updated : September 24, 2023

Pandas is a special tool that allows us to perform complex manipulations of data effectively and efficiently. Inside pandas, we mostly deal with a dataset in the form of DataFrame. DataFrames are 2-dimensional data structures in pandas. DataFrames consist of rows, columns, and data.

Here, we will learn about the Pandas.crosstab() method, its usage, syntax, and examples.

Pandas.crosstab() Method

The crosstab() method is just like the pivot function and somewhere it used the concept of the pivot table.

Syntax

pandas.crosstab(
    index, 
    columns, 
    values=None, 
    rownames=None, 
    colnames=None, 
    aggfunc=None, 
    margins=False, 
    margins_name='All', 
    dropna=True, 
    normalize=False
    )

Parameter(s)

  • index: an array, series or values to be grouped.
  • columns: values of columns to be grouped.
  • values: optional parameter, an array of some elements to be operated on aggregate function.
  • aggfunc: an optional function, it requires a 'value' parameter on which this function will work.

ADVERTISEMENT

Let us understand with the help of an example,

Example of pandas.crosstab() function

# Importing pandas package
import pandas as pd

# Importing numpy package
import numpy as np

# Creating numpy arrays
a = np.array(["One", "Two", "Three", "Four",
        "Red", "Blue", "Green", "White",
        "One", "One", "One"],
        dtype=object)

b = np.array(["one", "one", "one", "two",
        "one", "Four", "Four", "two",
        "two", "two", "Wow"],
        dtype=object)

c = np.array(["dull", "dull", "shiny",
        "dull", "dull", "shiny",
        "shiny", "sharp", "shiny",
        "blunt", "shiny"],
        dtype=object)

# Performing the cross tab
result = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])

# Display result
print("Result:\n",result)

Output

The output of the above program is:

Example: Pandas crosstab() function

Python Pandas Programs »

Comments and Discussions!

Load comments ↻





Copyright © 2024 www.includehelp.com. All rights reserved.