Home »
Python »
Python Programs
How to perform multidimensional scaling in Python?
By Shivang Yadav Last updated : November 21, 2023
Multidimensional Scaling
Multidimensional Scaling abbreviated as (MDS) is a statistical method used for visualizing the pairwise dissimilarity or similarity between a set of data points in a lower-dimensional space. It's often used in data visualization and dimensionality reduction.
In Python, you can perform MDS using libraries like scikit-learn and the SciPy library.
Let's see an example of multidimensional Scaling in Python.
Example
In this example, we are performing multidimensional scaling.
import pandas as pd
from sklearn.manifold import MDS
import matplotlib.pyplot as plt
myDataFrame = pd.DataFrame(
{
"player": ["P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9"],
"points": [4, 4, 6, 7, 8, 14, 16, 25, 28],
"assists": [3, 2, 2, 5, 7, 6, 8, 10, 11],
"blocks": [7, 6, 5, 8, 8, 4, 2, 2, 1],
"rebounds": [4, 5, 6, 5, 8, 10, 4, 2, 2],
}
)
myDataFrame = myDataFrame.set_index("player")
print(myDataFrame)
mds = MDS(random_state=0)
scaledDataFrame = mds.fit_transform(myDataFrame)
plt.scatter(scaledDataFrame[:, 0], scaledDataFrame[:, 1])
plt.xlabel("Coordinate 1")
plt.ylabel("Coordinate 2")
for i, txt in enumerate(myDataFrame.index):
plt.annotate(txt, (scaledDataFrame[:, 0][i] + 0.3, scaledDataFrame[:, 1][i]))
plt.show()
Output
The output of the above program is:
points assists blocks rebounds
player
P1 4 3 7 4
P2 4 2 6 5
P3 6 2 5 6
P4 7 5 8 5
P5 8 7 8 8
P6 14 6 4 10
P7 16 8 2 4
P8 25 10 2 2
P9 28 11 1 2
Python Pandas Programs »