Home »
Python »
Python Data Visualization
Python | Grid to the plot
Python | Grid to the plot: In this tutorial, we are going to learn about the grid to the plot and its implementation with examples.
By Anuj Singh Last updated : August 18, 2023
Matplotlib Adding Grid Lines
Most of the time, we need good accuracy in data visualization and a normal plot can be ambiguous. So, it is better to use a grid that allows us to locate the approximate value near the points in the plot. It helps in reducing the ambiguity and therefore, there is a function plt.grid() which generates a grid through the plot and enables better visualization.
The following are examples for understanding the implementation Grid.
1) Line plot with Grid
2) Bar Graph with Grid
3) Scatter Plot with Grid
Python program to demonstrate example of grid to the plot
# Data Visualization using Python
# Adding Grid
import numpy as np
import matplotlib.pyplot as plt
# Line Plot
N = 40
x = np.arange(N)
y = np.random.rand(N)*10
yy = np.random.rand(N)*10
plt.figure()
plt.plot(x,y)
plt.plot(x,yy)
plt.xlabel('Numbers')
plt.ylabel('Values')
plt.title('Line Plot with Grid')
plt.grid()
plt.show()
# Bar Graph
N = 8
x = np.array([1,2,3,4,5,6,7,9])
xx = np.array(['a','b','c','d','e','f','g','u'])
y = np.random.rand(N)*10
plt.figure()
plt.bar(np.arange(26), np.random.randint(0,50,26), alpha = 0.6)
plt.xlabel('Numbers')
plt.ylabel('Values')
plt.title('Bar Graph with Grid')
plt.grid()
plt.show()
# Scatter Plot
N = 40
x = np.random.rand(N)
y = np.random.rand(N)*10
colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
plt.figure()
plt.scatter(x, y, s=area, c=colors, alpha=0.8)
plt.xlabel('Numbers')
plt.ylabel('Values')
plt.title('Scatter Plot with Grid')
plt.grid()
plt.show()