Home »
Python »
Python Programs
How to pretty-print an entire Pandas DataFrame?
In this tutorial, we will learn how to pretty-print an entire Pandas DataFrame with the help of example?
By Pranit Sharma Last updated : April 12, 2023
Overview
In the real world, data is huge so is the dataset. While importing a dataset and converting it into DataFrame, the default printing method does not print the entire DataFrame. It compresses the rows and columns. In this article, we are going to learn how to pretty-print the entire DataFrame?
Pretty-print an entire Pandas DataFrame
To pretty-print format an entire Pandas DataFrame, we use Pandas options such as pd.options.display.max_columns, pd.options.display.max_rows, and pd.options.display.width to set and customize global behaviour related to display/printing the DataFrame.
Pretty-print Options
The following are some of the pretty-print options:
- display.max_columns: It defines the total number of columns to be printed. If None is passed as an argument, all columns would be printed.
- display.max_rows: It defines the total number of rows that need to be printed. If None is passed as an argument all rows would be printed.
- display.width: It is also an important option that defines the width of the display. If set to None, pandas will correctly auto-detect the width.
Let us understand with the help of an example.
Example 1: Print a Pandas DataFrame (Default Format)
# Importing pandas package
import pandas as pd
# Creating a dictionary
d = {
"Name":['Hari','Mohan','Neeti','Shaily','Ram','Umesh','Shirish','Rashmi','Pradeep','Neelam','Jitendra','Manoj','Rishi'],
"Age":[25,36,26,21,30,33,35,40,39,45,42,39,48],
"Gender":['Male','Male','Female','Female','Male','Male','Male','Female','Male','Female','Male','Male','Male'],
"Profession":['Doctor','Teacher','Singer','Student','Engineer','CA','Cricketer','Teacher','Teacher','Politician','Doctor','Manager','Clerk'],
"Title":['Mr','Mr','Ms','Ms','Mr','Mr','Mr','Ms','Mr','Ms','Mr','Mr','Mr'],
"Salary":[200000,50000,500000,0,100000,75000,10000000,50000,50000,200000,200000,150000,15000],
"Location":['Amritsar','Indore','Mumbai','Bhopal','Gurugram','Pune','Banglore','Ranchi','Surat','Chennai','Shimla','Kolkata','Raipur'],
"Marriage Status":[0,1,1,0,1,0,0,1,1,1,0,1,0]
}
# Now, Create DataFrame
df=pd.DataFrame(d)
# Printing the created DataFrame
print("DataFrame:\n")
print(df)
Output
DataFrame:
Name ... Marriage Status
0 Hari ... 0
1 Mohan ... 1
2 Neeti ... 1
3 Shaily ... 0
4 Ram ... 1
5 Umesh ... 0
6 Shirish ... 0
7 Rashmi ... 1
8 Pradeep ... 1
9 Neelam ... 1
10 Jitendra ... 0
11 Manoj ... 1
12 Rishi ... 0
[13 rows x 8 columns]
Example 2: Print a Pandas DataFrame in "Pretty" Format
In this example, we are setting the maximum rows and columns to display.
pd.options.display.max_rows = 5
pd.options.display.max_columns = 5
# Printing the DataFrame
print("DataFrame:\n")
print(df)
Output:
DataFrame:
Name Age ... Location Marriage Status
0 Hari 25 ... Amritsar 0
1 Mohan 36 ... Indore 1
.. ... ... ... ... ...
11 Manoj 39 ... Kolkata 1
12 Rishi 48 ... Raipur 0
[13 rows x 8 columns]
Example 3: Print a Pandas DataFrame in "Pretty" Format (Display All Rows, Columns)
In this example, we are setting the maximum rows, columns, and width to display all rows and columns with all data.
pd.options.display.max_rows = 13
pd.options.display.max_columns = 8
pd.options.display.width = 1000
# Printing the DataFrame
print("DataFrame:\n")
print(df)
Output:
DataFrame:
Name Age Gender Profession Title Salary Location Marriage Status
0 Hari 25 Male Doctor Mr 200000 Amritsar 0
1 Mohan 36 Male Teacher Mr 50000 Indore 1
2 Neeti 26 Female Singer Ms 500000 Mumbai 1
3 Shaily 21 Female Student Ms 0 Bhopal 0
4 Ram 30 Male Engineer Mr 100000 Gurugram 1
5 Umesh 33 Male CA Mr 75000 Pune 0
6 Shirish 35 Male Cricketer Mr 10000000 Banglore 0
7 Rashmi 40 Female Teacher Ms 50000 Ranchi 1
8 Pradeep 39 Male Teacher Mr 50000 Surat 1
9 Neelam 45 Female Politician Ms 200000 Chennai 1
10 Jitendra 42 Male Doctor Mr 200000 Shimla 0
11 Manoj 39 Male Manager Mr 150000 Kolkata 1
12 Rishi 48 Male Clerk Mr 15000 Raipur 0
Python Pandas Programs »